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J .  Phys. A: Math. Gen. 20 (1987) 713-731. Printed in the U K  

Theory of nematic comb-like polymers 

X J Wangt and M Warner 
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX1 1 OQX, UK 

Received 2 April 1986 

Abstract. Comb polymers with semi-flexible main chains and rod-like nematogenic side 
chains form interesting nematic phases, largely as a consequence of competition between 
polymer entropy and rod order. We model this competition taking main chains of various 
stiffness and side groups of various length. Depending on volume fractions, temperature, 
nematic coupling and stiffness we get one of three nematic phases which we call NI ,  N I I  
or NI,,. We find that at least one component, main or side chain, must be ordered toward 
a direction, i.e. have a positive order parameter, and the other order parameter can be 
positive or negative. We identify the molecular trends leading to each possibility. 

The theory, in addition to complex phase diagrams, also predicts unusual properties 
such as anomalous temperature variation of optical anisotropy and molecular conforma- 
tional changes. The latter, amenable to small angle neutron scattering, shows a prolate 
(rod-like) form for the main chain dimension in the NI ,  and NI, ,  phases where the main 
chain order parameter is positive. The oblate (disk-like) form, the N I  phase, is examined 
in some detail. 

1. Introduction 

Polymer liquid crystals exhibit unusual properties as a consequence of competition 
between the orientational ordering, imposed by their liquid crystal character, and the 
drive to maximal entropy common to all chain systems. We here examine this competi- 
tion in comb systems where the main (polymer) chain has a given degree of stiffness 
of its own but hinged to it are stiff side groups, the teeth of the comb, with their own 
mesogenic tendency. Such systems are prime candidates for smectic formation but we 
discuss this elsewhere (Renz and Warner 1986a) and restrict ourselves to uni-axial 
nematic phases. Additional competitive features are present for combs since the side 
group nematic tendency works against that of the backbone unless the molecular hinges 
are very weak. We identify the competitive influences below and then construct a 
theory in § 2 .  In Q 3 we discuss our results. 

We find three groups of nematic phases according to temperature and molecular 
structure. Either the main chain or side groups must have a positive order parameter. 
With one order parameter positive, the other can be positive or negative. We sketch 
the possibilities in figure 1 in order to fix our ideas. Because of the many influences 
in this problem and the novelty of the results obtained, we concentrate on demonstrating 
qualitative features by selecting various combinations of coupling constants, rather 
than trying to model specific polymers by estimating the molecular parameters. Some 
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Figure 1. The three principal uniaxial nematic phases possible for comb polymers. The 
resolution of the five antagonistic tendencies catalogued in the text determines which is 
stable. NI (SA > 0, SB< 0; A denoting side and B main chain) has the main chain exploring 
directions in or close to the plane perpendicular (1) to the ordering direction z. The phases 
NI ,  (SA < 0, Se 0) and NI,,  (SA > 0, SB> 0) are more reminiscent of the backbone phases 
since the main chain tangent explores directions about the ordering direction z. All phases 
are drawn for high degrees of ordering, especially of the main chains. 

of the results obtained in 0 3  include re-entrant phases and the possibility of the 
repeated alternation with temperature in the sign of optical anisotropies. In addition, 
the broad groups identified above are further broken down according to whether or 
not one of the components suffers a drastic change in order parameter before the 
nematic-isotropic phase transition. A close analogy with the case of a simple nematic 
in an external field greater than the critical value is found. We conclude with a 
discussion in § 4 of existing and further experiments to elucidate the qualitative aspects 
of liquid crystalline and chain conformations, and their consequences. 

In a melt of comb polymers we can identify at least five influences on molecular 
order which will determine the model to be solved below. These are as follows. 

(i) The drive toward parallel order of the mesogenic side chain moieties under the 
usual influence of steric and soft forces, described by the uA term in the model, acting 
between these elements. 

(ii) The same nematic influence, uB, acting between sections of the main chain. 
This coupling can be weaker than the case of backbone liquid crystalline polymers 
where the only mesogenic tendency is due to incorporated stiff units. 

(iii) The same nematic coupling, uc, between the directions of the side and main 
chains tending to make for alignment between them. 

(iv) The flexibility of the attachment spacer determining the extent to which side 
and main chains wish to be perpendicular (coupling uf). This and (iii) represent the 
coupling between the molecular components. These two couplings appear together 
and compete, yielding an overall sign which will alter according to the relative strengths 
of shape anisotropy and stiffness of the molecular hinge. 

(v) The polymeric aspects of the main chain. Here, we have the drive toward 
maximal entropy in chain conformation on the one hand and the need to reduce 
bending energy (modulus E )  by avoiding highly contorted configurations. 
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These five requirements are antagonistic to each other. For backbone nematics the 
transition to an  ordered state was seen to be the result of a conflict between orientational 
order and maximal entropy. The latent entropy of transition is much higher than in 
conventional nematics indicating the loss to the internal entropy reservoir of the 
polymer molecules. 

For combs conflicts similar to those in backbones can be envisaged. Imagine that 
the side chains order the most strongly ( u A  is large), the most likely situation. Then 
if uf dominates over uc, indicating the need for the main chain to be perpendicular to 
the side chains (like in a real comb), then the main chain will, on average, be reduced 
to exploring the plane perpendicular to the ordering direction, an enormous reduction 
in entropy, though not as great as the restriction to one dimension suffered by the 
chain in the case of backbone nematics. Because of this additional factor one would 
expect that mesogenic moieties, when connected by a chain, will have transitions 
different from when they act independently, as in conventional nematics. We call the 
above nematic phase NI.  

Another possibility is where mesogenic units in the side chain make uB comparable 
to vA and it is perhaps the main chain that orders with a positive order parameter, SB, 
and that it is the side chains that are confined to the perpendicular plane, SA < 0. We 
call this phase NI!. New compounds (Engel et a1 1985) give hope that these phases 
NI ,  and NI ] ,  will be found. This situation would be most conducive to biaxiality, a 
possibility we d o  not pursue here. 

The third alternative, NI[], is where uc dominates over uF, and the drive toward 
parallelism of main and side chains due to nematic interactions is stronger than the 
hinge influence leading to perpendicular orientation. The phase has SA and SB 3 0. 
Figure 1 sketches these three possibilities. 

Finally, the coupling to the entropy of chain configurations will have a great effect 
on chain dimensions in addition to the thermodynamic consequences. The possibilities 
listed above will lead to an  extension of the chain in the perpendicular or parallel 
directions respectively, the former being an  expanded random walk, the latter tending 
to a rod. There will be a concomitant contraction in the other directions. Small angle 
scattering experiments, directly probing chain dimensions, are called for as a comple- 
ment to thermodynamic and optical investigations which have already demonstrated 
the effects of coupling between main and side chain. 

2. A model for comb polymers and its solution 

The problem of a worm chain in a nematic field has been reduced to that of the 
spheroidal wave equation by many authors, first by Jahnig (1979,1981) and then by 
ten Bosch er a1 (1983a, b), Warner et a1 (1985) and Wang and Warner (1986a). The 
latter two papers, hereafter referred to as WGB and ww, show that many aspects of 
behaviour, especially as order increases, were not available from perturbative 
approaches. Detailed comparison with experiment is possible (ww). 

We employ this method for comb polymers and will use many of the results of 
WGB and ww. Our approach involves solving simultaneously for the order in the main 
chain and side chains, analogous to a problem encountered in the problem of a nematic 
polymer dissolved in a nematic solvent (ten Bosch er a1 1983b). 

We shall work within the mean field approximation. The coupling constants uA, 
uB, uc and v i  employed here have been discussed in the previous section. Although 
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it appears to be a purely Maier-Saupe (1959) approach, with the U having the 
appearance of soft forces, the U incorporate the effect of steric (Flory-Onsager) 
interactions, and can accordingly have a temperature-dependent component (see WGB). 

2.1. Volume fractions and coupling 

The relative efficacy of the competing couplings depends partly on the volume fraction 
of the two components (main chain and side chain). One can envisage altering the 
balance by either changing 

(a) the number of side chains attached per unit length to the main chain, or 
(b) the length of side chain elements while keeping constant the number affixed 

per unit length of main chain. 
To allow for either, or both, of the above and to make the effect of moiety length 

explicit in its effect on both soft and steric forces we follow the approach of Warner 
and Flory (1980), where the problem of steric effects in thermotropic multicomponent 
rod systems is examined. 

Let the cross sectional dimension 1 of side chain and main chain be equal for 
simplicity. Denote the length of side chains divided by this sectional length be x, an 
axial ratio, and the length of main chain associated with each pendant unit, similarly 
divided, by n. Then the volume fraction of side chain is 

x = x / ( n  + x )  (2.1) 
with a maximum possible value of x = x/ (x+ 1) when there is one side chain per 
segment of the main chain, n = 1. In the results that we shall present, x is varied at 
fixed x, i.e. by changing n. One could equally change x, or x and n together. This 
maximum value of x at fixed x assumes equal cross sections of side and main chains. 
Precisely what the maximum x is will be determined by these relative cross sections 
and the tacticity of the molecule. In the spirit of looking qualitatively at the types of 
order possible in response to competing influences we do not pursue the precise nature 
of the maximum of x. One can envisage many problems, for instance at high values 
of x and for certain tacticities the induction, via steric exclusion effects, of a bottle 
brush structure to the comb, where side chain freedom is mutually restricted and the 
main chain becomes effectively stiff. We shall ignore this although it perhaps occurs 
in a rigid hinge system of Finkelmann and Wendorff (1985) (see our discussion in 
§ 4). This limit of low hinge flexibility, in practice a small number of CH2 groups in 
the spacer connecting side to main chain, and high frequency of attachment of side 
chains, small n, is of great importance since it inhibits nematic phases. The mechanism 
for inhibition is difficult to model (see our comments below (2.3) on the influence of 
hinges). 

The relative number of side (main) chains seen by a segment (a length of chain 
equal to its sectional dimension) is then x(1 -x). There is one hinge per side chain 
irrespective of volume fraction. The mean field potential of a side chain is 

(2.2) 
where uA and uB are intersection energies between segments, Pz is the second Legendre 
polynomial, 3z2/2 - i, and z = cos @A. Similarly, the nematic energy of the main chain 
is 

U A  = - {xuAxsA+ [(  1 -x) UCX - uflsB}p2(z) 
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where the main chain, of length L,, is treated as a trajectory in space labelled by the 
arc position s from one end. The (unit) tangent vector, u* (s ) ,  fulfils the same role as 
the rod axis for low molecular weight nematics and  u, (s )  = cos e ( s )  with O(s)  being 
the angle the tangent vector makes with the ordering direction. The combination of 
U, and ufin the cross coupling clearly demonstrates the competition described in 0 l(iv). 

2.2. Mean jield theory 

The appearance of x and 1 -x in (2.2) and (2.3) is conventional for mean field theories 
with soft interactions. These factors merely express the number of neighbours of the 
appropriate type seen by each segment. For steric interactions, where there is a subtle 
interplay between shape and  volume fraction, the form of the apparent (temperature 
dependent) potential (compare with Warner and Flory equation (6)) is very different. 
Expansion of the log yields, for low volume fractions or  high degrees of order, forms 
like (2.2) and (2.3) where p/x of Warner and Flory (1980) should be identified with 
(sin e) which is like 1 - S, approximately. We then assume that (2.2) and (2.3) incorpor- 
ate steric effects in qualitatively the correct manner. 

The influence of one hinge on the tangent of the main chain in (2.3) is considered 
delocalised over the n segments separating hinges. This is probably reasonable for nl 
not too much larger than the natural stiffness length of the chain (to be discussed 
below). Important new classes of materials have been synthesised which include 
mesogenic elements in the backbone as well (Engel et a1 1985). The stiffness they 
imply can make this a good model of delocalised hinge effects. More esoteric phases 
can be envisaged if nl is larger than the natural stiffness length ( G u m  1985). Each 
hinge then has a localised effect along the backbone. Also assumed in (2.2) is that a 
mean orientation S ,  of backbone is transmitted by the hinge to the side chain, and  
vice versa in (2.3). 

Accompanying the above backbone stiffness between pendant groups is a torsional 
stiffness implying a correlation between angles consecutive side chains adopt with 
respect to the ordering direction. The mean field potentials assume they are uncorre- 
lated. The importance of this neglect depends on x and n. If side chains are relatively 
far apart on a scale set by their length x then their steric and soft interactions with 
their neighbours will not mutually interfere. The converse situation, however, could 
mean that our theory could, for instance overestimate the contribution of side chains 
to the latent entropy, in this case a property dominated by the backbone. The main 
chain tangent vector is correlated in any case along the chain by virtue of the backbone 
stiffness. The most likely effect of side chain correlation is in the side chain contribution 
to the free energy, something that will perhaps displace transitions in temperature. 

The cross coupling influences are weighted by the sizes of side chain and main 
chain repeat units, x and n . Extracting from the cross coupling the appropriate factors, 
x ( 1 - x )  in (2.2) or x in (2.31, yields an effective cross coupling V,= v , - u , / ( n x ) .  As 
Renz (1986) has pointed out to us, if V f  5 U A U B  then the stationary points in the free 
energy we find later are no longer minima but saddle points. This mysterious instability 
when the cross coupling becomes large compared with the self coupling will be taken 
up  elsewhere. 

Finally, the finite slope of the ST curves as T + 0 is an  artefact of mean field theory. 
A more accurate low temperature theory (of the spin wave type (see Faber 1977)) 
would yield zero slope in this limit. 
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2.3. Excluded volume 
In a polymer melt the long range problem of polymer excluded volume is generally 
unimportant. The dense environment of other chains leads to screening of interactions 
and the adoption of ideal dimensions. The extension to a rod in the backbone nematic 
does not enhance the probability of a chain seeing itself. However, a chain in a melt 
confined to two dimensions by the nematic field, an extreme case for the order envisaged 
in NI, cannot for topological reasons be screened and excluded volume statistics must 
prevail. We ignore this effect here and use ideal (non-excluding) chain statistics. Until 
the chain is drastically confined to the plane (SB+ -1) we do not expect this to be a 
serious problem. 

2.4. Theory 
To obtain the chain partition function we integrate over chain configurations the 
Boltzmann factor constructed from the mean fields (2.3) and the bending energy of 
the main chain, with p = (kBT)-':  

As discussed by WGB (2.4) yields an equivalent differential equation for probabilities 
G of chain configurations allowing evaluation of all averages and ZB itself. The 
differential equation represents the diffusion of the tangent vector on the surface of 
the unit sphere, the rotational diffusion constant D = (2 /3~ ) - '  yielding an effective step 
length, D-I, characterising the worm chain persistence in the absence of nematic fields. 
It is a natural length of chain elasticity in addition to the segmental length, 1. It is 
convenient to reduce main chain lengths by D-' with s = s'D-' and L B  = ND-', 
whence the first part of (2.4) becomes -:lo" ds' u ' ( s ' )  and (2.3) becomes 

U B  = - [( 1 -x) u B s B +  ( x v C  - vf/ ds' p 2 ( 8 z  (2.3') 

where n = D - ' / l  is the number of segments in a persistence length, roughly speaking 
an effective axial ratio for the chain, albeit temperature dependent. The length D-' 
can be determined by small angle neutron scattering in the isotropic melt phase. 

I,: 
The eigenequation corresponding to the diffusion equation is 

[A,, + v'; + A ~ (  1 -COS' e)]spn( e)  = 0. (2.5) 

The angular part only of V2 reminds us that the tangent vector is a unit vector for this 
length preserving model and that (2.4) represents the diffusion of P ( s )  on the surface 
of a sphere with a potential acting. The coupling constant A* in (2.5) is 

A' = -3p a [(I  - x ) v B s B  + ( X V C  - uf/ ) sA1/2* (2.6) 

In the phase NI with SB < 0, SA > 0 then A2 > 0, the oblate case, and P(s) is repelled 
by a polar potential into the equatorial region, i.e. the chain is confined toward the 
perpendicular plane. For the NI,  and Nl l l  phases with S B >  0 the prolate limit obtains 
and d ( s )  is confined to the poles with hair pin transitions between them (an idea of 
de Gennes (1982); see WGB and ww). 

The expression for the Green function G ( l ,  lo; N, 0) of (2.5) is 
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where 5, 5, are the final and initial values of cos 8, i.e. U,, and where An = A n  +2A2/3. 
G expresses the probability of starting out at s‘ = 0 with 5 = Lo and having 5 = 5 at s’ = N. 

G gives us averages, for instance the order parameter (WGB (5.18) and ww (16)) 
for long chains: 

The side chains obey a Maier-Saupe-like theory, albeit with T-dependent couplings, 
reviewed in this context by ww. The partition function is (see (2.2)) for UA 

Z A =  1’ dz exp(-pUA(z)). 
-1  

The order parameter SA is given by 

(2.10) 

Remembering that the right-hand side of (2.8) is determined by A*, and hence SA and 
SB,  it  is clear that (2.8) and (2.10) represent self-consistency equations to be solved 
for SA and S g .  

Free energies of a side chain and of a whole main chain, at self-consistent values 
of SA and SB,  are 

F A =  -kBT h zA-$( U,) E XfA (2.11) 

FB = - kB T In Z B  - +( U,) NfB. (2.12) 

The free energy of a repeat unit is then xfA + f B d /  D-’ which converts, after division 
by ( n  + x), to a free energy per unit volume, f :  

f = X f A +  ( 1 - x ) f B /  CY (2.13) 

with C Y ,  defined after (2.3‘), clearly playing the role of an effective axial ratio for the 
main chain. 

In (2.12) Z B  is evaluated by summing over l, 5, in (2.7). For long chains the n = 0 
term dominates. The result is as in ww and involves a,,,, the coefficient of Po in the 
expansion of Sp,. This is defined in ww but will not be important for long chains (see 
(2.15) below). The mean field term in (2.12) involves (JdsP,)  which becomes LBSB. 
Using this and (2.3) one obtains in f B  

( U,) /  N = i s B A ’ / p .  (2.14) 

For the isotropic phase, (2.11)-(2.13) yield5 = -x ln(2)/x - (1  -x) ln (2) la  which we 
subtract off all free energies henceforth. The nematic phase free energy relative to the 
isotropic phase is then 

p f N  = -x I n (  ZA/ )/ + pxSA{xvAsA + [ ( - ,v ) VC - Of/ 1 sB}/ 2 

+ (1 - X ) [ A O -  In(a:,o)/ N I l a  - ( 1  - x ) ~ B A ’ I ( ~ ~ )  (2.15) 

where, for chains long compared with their persistence length, N >> 1 ,  the a,,, term 
can be ignored. 
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2.4.1. Transitions. Comb polymers change phase on the satisfaction of the conditions 
fNI ,  fN, ,  or fN,,, = 0 for the nematic-isotropic transitions and fN,  = f N I I  for nematic I to 
11, and analogously to the 111 phase. There will be an attendant latent entropy, to be 
evaluated following the derivation of (25) in ww, the only difference being that aAo/ap 
is now 4S,A2/(3P). To calculate a molar entropy we immediately meet the problem, 
discussed in ww under comparison with experiment, of the relation between a per- 
sistence length (governing the backbone entropy scale) and a repeat length nl, determin- 
ing the frequency of occurrence of a side chain. The entropy of a mole of monomers, 
each comprising a side chain (x  units) and n units of main chain, is 

S N /  R = In( 2,4/2) - PXSA{XUASA + [ ( 1 - X )  U c  - Uf/ XIS,} - 2nAo/ CY + 4n A’S,/ (3a) 
(2.16) 

where the entropy of the isotropic phase has been subtracted out and terms of order 
N-I have been ignored. At the transition f N  = 0, (2.15) and (2.16) yield for the latent 
entropy 

A S / R  = -PcXS~{XU~S~+[ ( l  - X ) u c  - t+/X]s,}/2- nAo/a + nA2SB/a (2.17) 

with Pc = ( kBT)-l at the transition. 

2.4.2. Chain conformations. The antagonistic influences of the nematic field and the 
internal entropy of the chain are resolved by a distortion of chain statistics away from 
spherical. In the backbone polymer case (ww) and the NI* and Nlll  phases here, with 
S,> 0, the chain becomes prolate and, in the limit, rod-like. The results of ww for 
the chain dimensions can be taken over here, with the amended definition of the 
coupling A’ (equation (2.6)). The NI phase is different, corresponding to the oblate 
case of the spheroidal wave equation and with the chain statistics becoming disk-like 
in the limit (see our proviso about excluded volume). Because of the novelty of chain 
conformations in the NI case we examine it in some detail, especially the asymptotics. 

For the case of strong nematic order (low temperatures) it is possible to derive 
simple relations between chain dimensions parallel and perpendicular to the ordering 
direction, z. The first-order nature of the transition to the NI phase means there is 
not a region where the order is arbitrarily small and therefore there is not necessarily 
a region where a perturbation analysis would be reliable. Proceeding with the strong 
nematic analysis we note that the result WGB (5.3) for (RS),  the mean square dimension 
in the z direction, depends on the eigenvalue difference In the strong oblate limit 
this no longer becomes small (a tunnel splitting) but grows large (Meixner and Schafke 
1954): 

(2.18) A l , o =  26 - 1 + O( l /A) 

whereupon, for all polymers (i.e. where i,3 1 )  the expression for (RS)  becomes 

(2.19) 

The corresponding expression, WGB (5.13),  for the mean-square size in the perpen- 
dicular plane, ( R : )  = ( R : ) + ( R ; ) ,  reduces to 

The difference in eigenvalues tends to a constant: 

(2.20) 

At,o=A:-A,0=1+1/2A+ . . .  (2.21) 
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from which it is clear that (2.20) is only strictly correct for LB >> D-I. Otherwise the 
full form of the L dependence of WGB (5.3) must be used. 

It remains to evaluate the matrix elements in (2.19) and (2.20). Meixner and Schafke 
(1954) give the asymptotic forms of the wavefunctions in the oblate limit in terms of 
the parabolic cylinder functions. Using these, the matrix elements are [2/(3A)]1'2 and 
2( 1 - 1/2A)(2/3)'" respectively. The chain dimensions are accordingly 

(2.22) 

(2.23) 

and their ratio becomes 

( R I ) / (  R:) = [ 1/4A2][ 1 + 2/A + . . .I. (2.24) 

In contrast to the backbone or the NI1 and N l l l  cases the chain remains a random 
walk, compressed in the z direction below the isotropic value LBD-'/3 and expanded 
in the I direction above the isotropic value 2LBD-'/3 toward the value 2LBD-I. The 
latter result seems paradoxical if one thinks of the random walk having 4 of its steps 
in each direction and, since it is length-conserving, on complete compression the z 
steps would be redistributed in the I plane giving LBD-' for this dimension. The 
resolution lies in the fact that the random walk is on the tangent sphere, not directly 
in real space. Solving the diffusion equation for a two-dimensional stiff walk, i.e. on 
the tangent circle, yields the limiting result of 2LBD-l. This result we compare with 
that of Kuhn walks in § 4. Away from the asymptotic limit, just as for the prolate case 
(ww), one has to solve numerically for the eigenvalues and matrix elements. We shall 
not address the question of short polymers (LB-  D- ' )  in the NI phase since, in 
distinction to the prolate case, there is no transition to rod behaviour that can exist 
for various chain lengths when T < Tni. 

3. Results 

We are interested in a numerical solution of the self-consistency equations (2.8) and 
(2.10) to give the characteristic order SA, SB and phase behaviour via the free energy 
(2.15) of comb molecules in their four manifestations, NI,  NII ,  N l l l  and I. It suffices, 
to show the qualitative features of the phases, to adopt various typical values of the 
ratio of coupling constants uA; U,; uc; uf; E /  1, as well as values for two of the quantities 
n, x and x, recalling (2.1). We rearrange (2.6) by extracting U, and denoting, by a 
prime coupling constant, divided by U,, 

(3 .1 )  

?.' = (kB T ) * / (  FV, /  1 )  ( T /  T*)2 .  (3.2) 
The reduction of temperature follows ww, corresponding to the N I I  phase at x = 0, 
at which point A2 in (3 .1)  would be identical to A2 in ww. The reduction temperature 
T* = ( &U,/ 1 ) " 2 /  k ,  defined by (3.2) could be determined by comparison with experiment 
on NI,  in the ww limit. 

This limit of ,y = 0 can be achieved either by x + 0 or n + W .  The former limit is 
pathological in this mean field model because one hinge and its effect on the backbone 
(see (3 .1 )  and (3 .3)  below) is associated with each side chain irrespective of the axial 

A' = -3[ ( 1 - x) S B  + x( U& - U;/ n x )  S A ] /  f" 
where the reduced temperature ?. is 
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ratio x. The latter limit corresponds to diluting the effect of side chains on backbones, 
i.e. on A* (equation (3.1)). 

Since in (3.2) the reduction of temperature is by T* we can equivalently display 
our results in terms of temperature reduced by the transition temperature TB of a pure 
backbone system. ww find TB=O.3878 T* so a conversion between the two is easily 
made. We shall use T/ TB for temperature in our results. 

For , y # O  the side chain potential is needed and we extract a factor of uB from 
j3UA required in (2.9), yielding after some rearrangement 

The pure Maier-Saupe limit of ,y = 1 with side chain only is not accessible unless 
x + w ,  ,y being bounded by x/ (x+l ) .  At this point the transition temperature TNl 
diverges since it is a temperature reduced by backbone parameters ( u B ~ / I ) ” ’  whereas 
the effective side chain nematic coupling xuA is diverging. We accordingly do not 
examine this limit. 

By selecting various values of the coupling constants we now illustrate the range 
of behaviour possible for comb polymers as consequences of their molecular architec- 
tures. We fix the axial ratio x of the side chains for each case considered and vary 
the side chain volume fraction ,y by varying n, the frequency as we go along the main 
chain of finding pendant side chains (see (2.1)). We recall at this point the remarks 
about cross coupling made in the discussion of mean field theory in Q 2. Satisfaction 
of the self-consistency equations (2.8) and (2.10) only yields minima of the free energy 
(2.15) if I7f < uAuB. For fixed values of the coupling constants, variation of ,y will cause 
6, to vary and hence one must take care with the above inequality. We shall state 
when, in extreme parts of a phase diagram, values of ,y exceed a critical value ,yc and 
are too large to give reliable results. 

3.1. The efect of side chain volume fraction ,y on phase type 

Figure 2 shows a system which, for different volume fractions ,y of side chain, displays 
all three principal phases NI, NII and Nl l l  and the isotropic phase, denoted by I. 
Although 5f > U A U B  for ,y > 0.62 and there may be instabilities to the right of this point, 
the general features displayed allow a qualitative discussion of ordering influences. 
As reduced temperature is raised we have transitions from the N phases to I, proceeding 
via the primed phases (where one S is small, see discussion of figure 4) or in a re-entrant 
manner between NI and NII  in a narrow ,y region. The phase boundaries between the 
primed and unprimed phases are shown with broken curves since they are chosen 
arbitrarily at ISAI G 0.17. 

General features of the phase diagram can be understood by analysing the competing 
influences involved in the ordering. At high volume fractions ,y of side chain, inspection 
of the effective potentials (2.2) and (2.3) shows that the ordering of the side chains 
via their steric (nematic) fields is paramount. Main chains conform to this side chain 
ordering via their hinge constraints resulting in the oblate N I  phase ( SB < 0) found on 
the right-hand side of figure 2. Conversely, the SB> 0 phases ( N I I  and N I I I )  are found 
on the left-hand side since there the main chain volume fraction predominates and 
the free energy must be minimised by choosing the most favourable nematic ordering 
for main chains. Whether one has NII  or Nlll  depends on the balance between side 
chain shape (x), volume fraction and hinge strength. The effect’of the nematic field 
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Figure 2. The phase diagram of comb polymers with coupling constants in the ratio 
u A : u B : u C :  U,: E / [ =  1 : Z :  1.2:3:2withtheaxialratioofthesidechainsbeingx=3. Reduced 
temperature T i  TB (where TB is the transition temperature of main chains in the absence 
of side chains) is plotted against volume fraction ,y of side chains up to a maximum value 
of ,y = x/(l + x )  = 0.75. The phases NI ,  N I ,  and N I , ,  are drawn in figure 1 and 1 denotes 
the isotropic phase. Broken curves separate the primed N phases from the unprimed at 
an arbitrary value of /S,I-O.17. 

coupling to the side chain shape scales with their length (x) and must be compared 
with the hinge effect. The dominance of side chain (xu,) over hinge (uf) yields Nl l l  
and vice versa. Here we find N l l r  as x - 0 .  For finite ,y the balance changes and 
eventually the NI1 phase appears. This is discussed around equation (3.4). ( In  figure 
3 below we take two values of x and find that each phase diagram has only either N I I  
or  Nl l l  but not both.) Dotted lines suggest an extension of the phase boundaries to 
very low temperatures. A more precise analysis will be given elsewhere. The re-entrant 
part of the phase diagram is in the region ,y > x, = 0.62. However we believe re-entrancy 
to be a general phenomena. An illustration of the variation of properties with tem- 
perature at fixed side chain volume fraction, x, in particular the exchange of sign of 
the order parameters SA and SB, is discussed below in figure 6 where it is shown how 
optical anisotropy would be a simple test of such phase behaviour. 

3.2. The effect of side chain length on phase type 

In figure 3 ( a )  we show combs with coupling constant ratios 3 : 2 :  1 : 3 : 2 and two different 
axial ratios x = 5 and x = 1. For the shorter side chains (x = 1 )  the hinge (urging the 
side chains perpendicular to the main chain) dominates over the nematic field effects 
and hence only N I I  and I are found. The phase line terminates at xc = 0.13 where the 
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Figure 3. (a )  The effect of changing the axial ratio of side chains on the phase behaviour 
of combs. Reduced temperature T /  TB is shown against side chain volume fraction ,y, with 
maximum possible values of x = 0.5 for x = 1 and x = 2 for x = 5 .  Longer side chains (x  = 5 ,  
full and broken curves) lead to NI , ,  (side and main chains parallel) when dilute ( x  small) 
and to NI (the side chains constraining the backbone toward the perpendicular plane, 
& S O )  when ,y is large. The x = 1 combs can only support an NI ,  phase (dotted line 
terminating at xC = 0.13), since the hinges are now more effective than a short rod coupling 
to the nematic field, and an I phase. ( b )  Nl i i -Nl - I  transitions for x =  5 combs at x = 0 . 5  
side chain volume fraction. The main chain order parameter S, changes sign but, although 
coupled to the side chains, only a very slight discontinuity in SA is observed at this reduced 
temperature T /  T, = 0.47 (discontinuity too small to see in the figure at this scale). 
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effective cross coupling becomes too large. For x = 5 the drive for the side chains to 
respond to the nematic field of the main chain dominates over the effect of the hinge 
and Nllr  results. As in figure 2, the N I  phases are found (when at all) to the right of 
the diagram at higher x. The critical volume fraction limit, xC, from the cross coupling, 
is 0.826, marginally less than the geometric maximum 0.833. 

3.3, The primed phases-one order parameter small 

The variation of order parameter with temperature for the x = 5 side chains of volume 
fraction x = 0.5 is shown in figure 3 ( b )  when we have the sequence NIII,  NI, N f ,  I 
involving a change in sign of SB. 

If instead of looking at this volume fraction of side chains we examine x = 0.3, 
then we see from figure 3 ( a )  on raising the temperature a phase sequence N I I I - N ~ l I - I .  
This is illustrated in figure 4 where the SB- T curve is reminiscent of that for a nematic 
in an external field above the critical value (see Wojtowicz and Sheng (1974) for a 
description of simple nematics in an external field using Maier-Saupe theory and 
Hornreich (1985) for a Landau theory with refined estimates of critical fields). Here 
it is the polymer phase that is effectively in an external field (from the A phase). For 
a genuinely simple backbone polymer the internal degrees of freedom do not qualita- 
tively effect the idea of a line of first-order transitions with a critical endpoint (Wang 
and Warner 1986b). To see the analogy examine the potentials U,  and U, ((2.2) and 
(2.3)). In this case in UB the uc and uf terms are like ‘external’ fields with magnitude 
determined by SA. If the natural transition temperature for B alone, i.e. without the 
influence of A, is lower than for that of A alone, then above this temperature one 
essentially has only an SB # 0 because of the polarising effect of the field SA. Figure 
4 shows that this temperature, i.e. the point where S, changes most rapidly with 
temperature (a memory of the transition), is not quite at T /  TB = 1 since (a)  there is a 
reduction because the volume fraction (1 -x) of chain is less than 1 and (b) there is 
an increase, as in the simple polymer case (Wang and Warner 1986b), because of the 

Figure 4. Order parameters SA and Sa as functions of reduced temperature T /  T, for the 
transitions N , , l - N ~ l , - I  of the chains in figure 3 ( a ) .  Volume fraction of side chains is ,y = 0.3 
and their axial ratio is x = 5 .  Note for Sa the similarity with simple nematics in an external 
field, here applied by the A component on B. Lack of a discontinuity in Sa implies that 
we are above the critical field value. 
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applied field. Our nomenclature for this is Nil,, the single prime denoting that it is 
the B component that resembles a nematic in an external field, i.e. SB - 0. If TA =s T B  

then there is the possibility that SA - 0 before the transition to the isotropic phase is 
achieved. We denote this kind of phase by a double prime, in this case it would be 
NY,,. Figure 2 is now easier to understand, especially the appearance of ” phases NY, 
and N;,,. Side chain nematic coupling is relatively weak compared with the relevant 
backbone parameters and one must examine (uB&/I)”*: vAx = 2: 15, whereupon TA is 
lower than TB and the A component effectively feels an external field from the B 
component with a resultant ” phase. Contrast this with figures 3 ( a )  and 4 where the 
corresponding ratio is 2 : 3 ,  TB is reduced with respect to T A  and a ’ phase results. 
Quantitative analysis of these effects will follow elsewhere. 

3.4. Coexistence and competition between phases 

More can be understood about the phase diagram figure 2 having argued for the “ 
phases. N;, and N;,, differ in the sign of the small order parameter SA. Returning to 
the potential UA (2.2) governing the behaviour of SA (see (2.10)) one sees that the 
coefficient of P 2 ( z )  changes sign at a volume fraction 

2 = ( X U C -  U f ) / [ x ( u C -  U A S A / S B ) ]  (3.4) 

inducing a change of sign in SA at roughly this point. Putting in values for figure 2 
one obtains from this crude estimate 2 = 0.166, in agreement with the phase boundary 
found from calculation. That the N;,/NY,, phase line is nearly vertical follows from 
the smallness of SA. In (3.4) the only temperature dependence of 2 comes from the 
S A / S B  factor. If ISA! - 0 then this term in the denominator can be neglected and X is 
temperature independent. An exactly analogous analysis from UB gives the same 
conclusion about the steepness of the Nf, ,-Ni boundaries (see figures 3 ( a )  and 5, 
where ISB/ -0). This argument can be refined (Rem 1986) to show that the phase lines 
are exactly vertical. 

x 
Figure 5. The effect of changing side-main chain coupling. Phase diagrams with reduced 
temperature T/ T,  against volume fraction of side chain ,y in the allowed range 0 to 0.75 
corresponding to the side chain axial ratio x = 3 .  In ( a )  the coupling constants 
U,: ub: U,: U,: & / l s e g  are in the ratio 3 : 2 :  1 : 3 : 2 .  In ( b )  the coupling between main and side 
chains, uc, is doubled to u,=2.  The effect is to remove the N , ,  phase in favour of the 
N, , ,  phase. 
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The factors governing the sign of the coefficient of P2 in UA (equation ( 2 . 2 ) ) ,  evident 
through (3.4), and in U, (equation (2.3)) crudely control the coexistence between the 
unprimed phases as well. This was seen in the interpretation of NIII  existence as x + 0 
in figure 2 .  We examine, in figure 5, the consequences of doubling the main chain/side 
chain nematic coupling uc while keeping all other factors constant. In figure 5(a)  the 
weaker coupling means that the hinge prevails and an NI,  phase with SA 0 results. 
In figure 5 ( b ) ,  with twice the value of uc, NI,, results (S,aO). This same competition 
between nematic field (- xu,) and hinge ( uf) was evident from the discussion for figure 
3(a) where the balance was changed by the variation of x rather than U,. 

3.5. Apparently anomalous optical properties 

The combs of figure 5 ( a )  are also interesting because they show an NIl-NI-I sequence 
of transitions which form an illustration of the unusual variation of optical anisotropy 
one could expect. In figure 6 the system of figure 5 ( a )  has its variation of order 
parameters displayed as a function of reduced temperature at a fixed side chain volume 
fraction x = 0.4. The exchange of signs of SA and S, at T /  TB = 0.6 could give misleading 
variations of optical properties in the assignment of phase type. Imagine initially that 
x, S i  and S i  (the order parameters on the lower side of T = 0.6) and the molecular 
optical anisotropies Aa,, A a B  are such that the anisotropy measured in the laboratory 
is zero: 

A a - = ( l  - x ) A c x ~ S B + X A ( Y A S A = O .  (3.5) 

ha+ = ~ha,S:[ l -  (Si /  S i ) ( S J S i ) ]  (3.6) 
where each of the order parameter ratios is negative and of modulus less than unity, 
and so the sign of A a f  is determined by A a A  only. This crude example, which ignores 

Above the transition, using (3.5), one has for the optical anisotropy 

Figure 6. The combs of figure 5 ( a )  at volume fraction x = 0.4 showing the transitions 
N,,-N,-I. This involves the exchange in signs of the order parameters at a reduced 
temperature of T/ T, = 0.6 with possibly unusual consequences for such properties as 
optical anistropy (see text). 
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internal field corrections, is merely to show that unusual effects such as optical 
anisotropies increasing with temperature can be envisaged. The converse situation to 
(3.5) could also arise, namely that ha+ could be zero or very small and the NII-NI 
transition would then be confused with a transition to an I state. Of course an N M R  

experiment, measuring one of the order parameters only, would be unambiguous in 
its identification of a mesophase, except when the probe were to be on a component 
in a primed or double primed phase where the order parameter is very small. 

4. Discussion 

We conclude by summarising what we have calculated and discuss its relation to 
experiment. 

In common with other problems in polymer liquid crystals, that of nematic combs 
involves a competition between the entropy of the semi-flexible main chain, and the 
drive toward orientational order of the main and side chains. We introduced five 
antagonistic influences and as a consequence derived three different types of nematic 
phases. Our aim was to elucidate the various possibilities for order and the transitions 
between options. To that end we did not try to estimate the various coupling constants 
introduced, but rather took certain combinations demonstrating the different types of 
phase behaviour. These types illustrate the outcome of the competition between the 
side and main chains. The oblate phase, NI, where the main chain explores the plane 
perpendicular to the director is new, and the other two prolate cases NI1 and Nll l  
where the main chain is on average along the director have certain similarities with 
the backbone (non-comb) polymers discussed previously. Their ordering and the 
interplay between main and side chains is apparently new. Subtleties such as the 
exchange of sign of the order parameters of the components, apparently anomalous 
variation of optical properties and re-entrant phases will complicate the experimental 
identification of such possibilities. 

The distinction between the mesogenic behaviour of the teeth of the comb and 
their simple nematic counterparts rests in their lack of independence from the main 
chain arising from their connection via a hinge. Kock et a1 (1985) demonstrate this 
main-side chain coupling by photoelastic experiments on networks comprised of comb 
molecules. Firstly, a change in stress at constant strain occurs when T = TN,. The 
change in optical anisotropy is large compared with that induced by straining the 
isotropic network, indicating that side chains (with their high molecular anisotropy of 
polarisability) are ordering. Because of hinge coupling, main chains alter their confor- 
mations and there is a change in the natural dimensions of the network, explaining 
the stress change. Secondly, networks are observed to have large negative stress-optical 
coefficients, in contrast to their small positive values when the side chains are absent, 
indicating strongly hinged side chains possibly of the NI! type being negatively biased 
with respect to the strain axis. 

Stress-optical measurements, where refractive indices along different axes in a 
network vary with applied stress, can identify the character of a phase. With a hinge 
consisting of (CH,), groups a positive photoelastic coefficient when T> TNI indicates 
that side chains are parallel to the main chain. Below TNI this coefficient remains 
positive which, combined with x-ray evidence, indicates an N,II  phase. Shortening the 
hinge to (CH,), produces a nematic phase, possibly optically negative and possibly 
the NI, phase. As Kock er a1 note, the phases have one axis defined by the uniaxial 
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nematic order and, when stress is applied perpendicular to this axis, another defined 
by the strain just as in the stress-optical response of a conventional network. The 
networks consequently become biaxial. The transition from Ni l ,  to N I ,  behaviour on 
shortening the hinge is plausible from our theoretical analysis. 

Finkelmann and Wendorff (1985) discuss poly(methacry1ate) combs with strong 
hinges [(CH,),] which in an  undiluted melt exhibit negative uniaxial optical anisotropy. 
This suggests the N i l  phase, but we recall our discussion before (2 .2)  regarding the 
induction of bottle brushes when side chains are close packed and have strong hinges. 
The concern is that the molecule simply becomes a huge rod and orders in the manner 
of conventional nematic rods. It is found, however, that the addition of as little as 
5 %  of simple nematic solvent, identical to the teeth of the comb, is sufficient to destroy 
this optically negative state. If rods are very long it is known that considerable dilution 
is required before their nematic order is destroyed. Perhaps by altering the balance 
between interside chain coupling (effectively changing x) and hinge effects, one is 
inducing such a phase change with the solvent, as predicted in $, 3. Small angle 
scattering experiments on main chain dimensions in this solution, or stress-optical 
measurements on such networks subsequently swollen by nematic solvent, would 
elucidate the details of this phase change. 

The NI phase has certainly been seen by scattering experiments determining the 
radius of gyration of the main chain in directions parallel and perpendicular to the 
director (Kirste and Ohm 1985). In fact, the variation of chain dimensions is a possible 
universal phenomenon, independent of precise values taken for coupling constants, 
provided they are such as to force one into the appropriate phase. Examples of this 
were given in WGB and ww where backbone nematics were argued to have an exponen- 
tial temperature variation of dimension parallel to the director, a consequence of the 
competition between chain bending, entropy and nematic ordering. We expect the NI i  
and NI,, phases to have this characteristic at low enough temperatures. Atactic combs 
will possibly offer the best possibility of achieving this limit. For the new oblate case 
(2.22), (2.23) and (2.24) describe the corresponding variation of dimensions as the 
chain is compressed down toward a disk shape. To see exactly what (2.22) and (2.23) 
imply we reassemble (2.6) for A2, recalling that (Y = D- ' / l  is the number of segments 
per effective step length. We then obtain 

A2 = -3D- 'p[  (1 - X )  UBSB- (Uf/ n -xuC)sA]/2/ (4.1) 
where for the simpler one-component case ( x = O ,  no side chain) A2 reduces to 
- ~ D - ' P s , v ~ / ~ ~  in agreement with WGB (where u B / l  is written as a ) .  Combining (2.22) 
and (4.1) and noting that as T becomes small SA and SB saturate and the square 
bracket of (4.1) is weakly T dependent, one obtains 

(R:)  = constant TLB (4.2) 
i.e. chains should shrink in a particularly simple manner as temperature is lowered. 
For ( R : )  we have a saturation value of 2LBD-I which, since D-' = 2 & / k ~ T  depends 
on temperature, will grow simply because the effective step length is becoming larger, 
rather than because the nature of the walk continues to change. The ratio of dimensions 

(Rt) / (R:)  = 1 / 4 A 2 + 0 ( A - ' )  (4.3) 
scales like T*/E at strong enough nematic ordering and hence depends on E(T) as 
well. Jahnig (1979) has argued for certain systems that E is a weak function of 
temperature but this is unlikely to be a general phenomenon (he argued for cases 
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where the flexibility in the backbone came from -CH2- sequences). In such comb 
phases as NI one probably has to look to the smectic phase with underlying NI order 
to see more qualitative aspects of chain dimension-exponential (activated) variation 
(Renz and Warner 1986a). The experiments of Kirste and Ohm (1985) do not give a 
sufficient number of points for the resolved radii of gyration as a function of temperature 
to check (4 .2) .  

One potential difference from Kirste and Ohm's analysis arises: they point out that 
biasing a Kuhn walk does not alter the total radius of gyration of a molecule (averaged 
over directions). They use this to explain their observation that in the NI phase (R') 
is unchanged from its value in the I phase. Resolving the components ( R t )  and ( R ? )  
(their definition of the latter differs from ours by a factor of two) and then averaging 
yields the same result as the powder averaged value (R').  In our worm-like chain 
picture this is mysterious. As we report in (2.22) and (2.23) and their subsequent 
discussion, in the frame of the nematic the result of compression toward a disk is that 

( R : )  ( R :  -I- R:)  + ~ L B D - '  (4 .4)  
and (R: )+O.  Powder averaging over orientations 0 of the disk normal, appropriate 
to the unaligned nematic sample, would yield 2LBD-'(sin2 0) = :LBD-'  for ( R : ) .  The 
average (R')  along a scattering vector squared would be + L B D - ' ,  half of (4.4) since 
only one component of (R:)  lies along the scattering vector. This is twice the value 
obtained from the Kuhn nnalysis and used by Kirste and Ohm. We stress that this 
holds when the nematic field is very strong and the polymer shape approaches that of 
a disk. In the initial stages below TN1 the nematic field is not so strong and ( R 2 )  will 
be closer to the isotropic value. Of course the fundamental model of a chain is closer 
to that of a worm and the Kuhn effective step length derives from the expression 
( R 2 ) / L .  Our analysis indicates that the precise value of the Kuhn step length derived 
from comparison with the worm value of ( R 2 ) / L  depends on the dimensionality of 
the random walk: 

3D: ( R ')I L = D - ' + 1 = D - ' 
(4.5) 

2D: ( R 2 ) / L = 2 D - ' +  1=2D- ' .  

The conclusion is perhaps that it is dangerous to take a Kuhn model for a chain and 
expect it to have the same step length as one goes between dimensions. 

Another point of divergence from the Kuhn picture arises in the NI I  and NI,, 
prolate phases. In those cases we argue that in the strong nematic limit the comb 
becomes rod-like. A Kuhn process where the steps are all aligned gives a three-fold 
increase in ( R t )  and no change in (R') itself whereas a rod has ( R 2 )  greater by a factor 
of L/  D-'. The difference of course is that successive bonds are not only aligned with 
respect to the nematic director but changes in direction with respect to the previous 
bond are also penalised by the nematic, leading eventually to a rod. 

The increase in ( R 2 )  for both prolate ( A 2  < 0) and oblate ( A 2  > 0) deviations of the 
worm from spherical conformation means that for lA('- 0 we must have (SR') - A4 
for the change in mean-square dimension. Changes in the dimensions associated with 
each direction, (SRt )  and (SR:),  must be linear in A2 since they change sign on going 
from oblate to prolate. Since in Kirste and Ohm's experiment ( S R ; ) / ( R 2 ) -  
( S R : ) / ( R 2 )  - 10% it is plausible to expect that ( S R 2 ) / ( R 2 )  will be small, perhaps around 
1%, and that greater degrees of anisotropy in R,  and R ,  are required to see ( R 2 )  
change. Predicted properties of combs, other than their qualitative phase structure 
and variation of dimensions, are not so universal. An example is the latent entropy 
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(equation (2.17)). For backbone systems ww found this to be a universal value, but 
here, where there are two components interacting, the same simplification does not 
occur. We can reduce (2.17) somewhat in the light of the coupling constant ratios 
introduced in 0 3. After some algebra and using the expression CY = D-’/ l, the number 
of segments per effective step length, one obtains for the latent entropy per repeat unit 

(4.6) 
where T c / T B  is the reduced transition temperature of the figures and A:’ is the 
eigenvalue at the transition. The components of the expression scale in understandable 
ways: the first factor with 1ID-I as an artefact of our reducing temperatures by TB,  
the transition temperature of the pure system, which reduces to F u B / I  times a constant. 
The second factor is Ab‘’, the free energy per step length of main chain, times the 
number of step lengths per repeat unit, n l / D - ’ .  As in the case of backbone latent 
entropies (ww), this places restrictions on AS since D-’ is separately determinable 
from a neutron scattering experiment for chain dimensions. 
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